本文共 3037 字,大约阅读时间需要 10 分钟。
一、OpenCL简介
开放计算语言(Open Computing Language, OpenCL)是非盈利技术联盟Khronos Group管理的异构编程框架。该框架充分利用了CPU、DSP、FPGA、GPU的计算能力。OpenCL支持多层次的并行,可以高效的映射到同构或异构的体系结构上。二、OpenCL规范
OpenCL规范由四个模块组成: 1)平台模型:定义了一个抽象的硬件模型,描述了宿主机和设备。供编程人员在上面编写在这些设备上执行的Kernel。 2)执行模型:定义了如何在宿主机上配置OpenCL环境以及如何在设备上执行Kernel。 3)内存模型:定义了Kernel中所使用的内存层次,无需考虑实际的底层架构。 4)编程模型:定义了如何将并发模型映射到物理硬件上。平台模型:
平台模型由一个宿主机以及一个或多个设备组成,一个设备可以分为多个CUs(Compute Units),一个CU又可以进一步划分为多个PEs(Processing Elements)。设备上的计算具体映射到了每个PE之上。 在平台模型中编程人员需要关注三种版本号:平台版本号、设备版本号、OpenCL支持版本号。 平台版本号表明了平台所支持的运行时功能,包括了OpenCL运行时所有与宿主机交互的APIs,例如上下文、内存对象、设备、命令队列相关的函数。 设备版本号表明了设备的能力,可以使用clGetDeviceInfo函数获取。设备信息通常包括资源限制和扩展功能等。 语言版本号表明了设备最高支持的语言版本。执行模型:
OpenCL的执行模型分为 两部分,Kernel Program和Host Program,宿主程序定义了Kernel执行的上下文并控制其执行。执行模型中主要定义了kernel是怎样执行的。 这里首先讲一下执行模型中非常重要的两个概念——work-item和work-groups。在kernel由宿主机提交给设备执行的同时,定义了一个索引空间。每个work-item可以看做是kernel在设备上单次执行的实例,该实例在索引空间中拥有唯一的索引值。基于索引值的不同,每个work-item虽然执行同样的kernel程序,但却有自己的代码路径和数据路径。work-item被组织为work-groups。在同一work-groups中每个work-item拥有唯一的local ID,如果有多个work-groups,那么在不同的work-groups之间local ID不是唯一的。一个work-item索引必须采用global ID或local ID + work-groups ID才能唯一确定。 在执行模型中另一个非常重要的概念是NDRange,即N维索引空间,这里的N可以定义为1,2或3。它由一个长度为N的数组组成,每个数组元素表示该维度上工作节点的个数。工作节点的global ID、local ID以及work-groups ID都是N维的。上图是一个二维索引空间的实例,NDRange(Gx,Gy),对应的工作组为NDRange(Sx,Sy)。每个维度的工作空间恰好分配为整数个工作组。这里要求Gx必须为Sx的整数倍,Gy必须为Sy的整数倍。 上下文与命令队列 在OpenCL中,上下文(context)是一个存在于主机端的抽象容器。负责协调主机——设备之间的交互,管理设备上可用的内存对象,跟踪每个设备建立的kernel和程序。 宿主机负责定义kernel的上下文,上下文包括以下资源:) 1)设备:平台上可用的设备。 2)Kernels:运行在设备上的OpenCL C程序。 3)程序对象:负责执行和实现Kernels的程序资源。 4)内存对象:Kernel和宿主机可见的内存对象的集合,内存对象中包含kernel实例中用于计算的数据。 新建上下文的API为clCreateContext(),API函数clCreateCommandQueue()用来建立命令队列并将其关联到某个设备。 cl_context clCreateContext(const cl_context_properties *properties, cl_unit num_devices, void (CL_CALLBACK *pfn_notify)( const char *errinfo, const void *private_info, size_t cb, void *user_data), void *user_data, cl_int *errcode_ret) cl_command_queue clCreateCommandQueue(cl_context context cl_device_id device, cl_command_queue_properties properties, cl_int *errcode_ret)内存对象
OpenCL应用程序用来处理大型数组或多维矩阵,在kernel开始执行之前需要将这些数据实际映射到设备上。在OpenCL中采用的方法是将这些数据封装为内存对象。OpenCL定义了两种内存对象:buffer和image。buffer类似于C语言中的数组,由malloc()分配,在内存中是连续存放的。而image被设计为不透明的对象,以利于进行数据填充和在特定的设备上进行性能优化。 创建buffer的内存对象的API为clCreateBuffer(),内存对象作为返回值返回。 cl_mem clCreateBuffer(cl_context context,cl_mem_flags flags, size_t size, void *host_ptr,cl_int *errcode_ret) clCreateCommandQueue()中的属性参数properties是一个位域,用于开启程序剖析(profiling)命令(CL_QUEUE_PROFILING_ENABLE)、乱序执行(CL_QUEUE_OUT_OF_ORDER_EXEC_ENABLE)。 将宿主机内存传入或传出设备的API分别为clEnqueueWriteBuffer和clEnqueueReadBuffer。可通过设置参数选项blocking_write为CL_TRUE,使写函数工作在阻塞模式——数据完成到OpenCL buffer的传输后才返回。程序对象:
OpenCL中的程序(program)特指kernel函数的集合,是kernel被调度安排到设备上运行的单位。 OpenCL程序运行时通过调用一系列。API进行编译,编译系统对具体设备进行优化。OpenCL软件仅链接到公共运行层(称为ICD),所有平台特定的SDK通过一个动态链接接口委托给某个厂商的运行时。 新建kernel的步骤如下: 1)OpenCL源代码以字符串形式存储。如果代码存放在文件中,则必须读取到内存中,在内存中以字符串数组的形式存放。 2)源代码通过调用clCreateProgramWithSource()转化为cl_program对象。 3)调用clBuildProgram()在支持OpenCL的设备上编译程序对象。三、总结
本篇文章主要介绍了OpenCL的规范,下节中将对如何编写OpenCL应用程序进行介绍。转载地址:http://dsnp.baihongyu.com/